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ABSTRACT 

We extend the 1ST for the Benjamin-Ono (BO) equation, given in Ref.[l], in two 

important ways. First, we restrict the 1ST to purely real potentials, in which case, 

the scattering data and the inverse scattering equations simplify. Second, we also 

extend the analysis of the asymptotics of the Jost functions and the scattering data 

to include the nongeneric classes of potentials, which include, but may not be limited 

to, all iV-soliton solutions. In the process, we also study the adjoint equation of 

the eigenvalue problem for the BO equation, from which, for real potentials, we find 

a very simple relation between the functions ß(X) and /(A), introduced in Ref.[l]. 

Furthermore, we show that the reflection coefficient also defines a phase shift, which 

can be interpreted as the phase shift between the left Jost function and the right 

Jost function. This phase shift leads to an analogy of Levinson's Theorem, as well 

as a condition on the number on possible bound states that can be contained in 

the initial data. We also study the structure of the scattering data and the Jost 

functions for pure soliton solutions, and obtain remarkably simple solutions for these 

Jost functions. Since they are examples of nongeneric potentials, they demonstrate 

the asymptotics for nongeneric potentials. We then carefully detail the asymptotics 

in the limit A —>• 0+ for generic and nongeneric potentials. Lastly, we show how to 

obtain the infinity of conserved quantities from one of the Jost functions of the BO 

equation, and also how to obtain these conserved quantities in terms of the various 

moments of the scattering data. 
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2Permanent address:  Department of Applied Science, Faculty of Engineering, Yamaguchi Uni- 

versity, Ube 755, Japan, email: matsuno@po.cc.yamaguchi-u.ac.jp 
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I    INTRODUCTION 

The Benjamin-Ono (BO) equation [2] 

ut 

1 /-co    v(£} 
+ 2uux + Huxx = 0,    Hv(x) = -P        T^-d^ (1) 

7T      J-oo c — -t- 

where P indicates the principal value of the integral, is one of the important integrable 

equations which can be linearized and solved by an inverse scattering transform (1ST). 

It has important physical limits of internal gravity waves in a stratified fluid [2] as well 

as long waves in a stratified shear flow [3, 4]. Thus this equation is very important for 

the understanding of the evolution of stratified flows. It has soliton solutions [5, 6, 7] 

and a Lax Pair [8, 9]. Interactions of BO solitons have been studied by Y. Matsuno 

[10], as well as the asymptotics of the linearized BO equation, which describe the decay 

of the continuous spectra. A perturbation theory for the 1-soliton solutions of the BO 

equation has been obtained directly by Chen and Kaup [11], without reference to, or 

the use of the 1ST. Stability of the periodic solutions of the BO equation has been 

studied in one and two dimensions [12]. Physical applications of soliton solutions of 

the BO equation have been studied in various contexts by Matsuno. He has developed 

a multisoliton perturbation theory of BO solitons [13], and has applied it to two cases. 

These cases were weak dissipation and/or higher order dispersions, and he determined 

the shifts in the soliton amplitudes and the phases due to these effects. Effects of 

uneven bottoms have also been studied by Matsuno [14] wherein he has demonstrated 

that the topography could capture, repel, or even generate a stationary state. 

Fokas and Ablowitz [1] presented the 1ST solution for the BO equation. This solu- 

tion was novel and significant in several ways. First, it was the solution of the direct 

and inverse scattering problems of an integro-differential equation, which was a non- 

local Riemann-Hilbert problem in space. As such, the direct problem was uniquely 

different, requiring Fredholm theory to detail the properties of the continuous spec- 

tra, the discrete spectra, and the normalization constants. An important feature of 

this problem is that the generic potentials of this problem will in general only vanish 

algebraic, preventing one from using compact support, which was a key simplify- 

ing feature, useful in the analysis of the standard Schrödinger and Zakharov-Shabat 

eigenvalue problems [15]. Furthermore, they demonstrated that this 1ST could be 

formulated without having to detail the full properties of the scattering data of the 

problem. Also, they solved these problems for a general complex generic potential. 

The direct and inverse scattering problems for a related scattering problem (origi- 

nating from a different, but equivalent Lax pair), has been studied by Coiffman and 

Wickerhauser [16]. There they have described many of the features of this scattering 

problem, particularly in the limit of very small initial data. 

Here we extend the results of Ref. [1] in several ways. First, we detail the symme- 

tries of the scattering data when the potential is purely real. We also treat the case of 



nongeneric potentials, which includes all the JV-soliton solutions. As we shall see, the 

nongeneric case has distinctly different asymptotics from the generic case treated in 

Ref. [1]. When the potential is real, one can also relate the two reflection coefficients 

of Ref. [1], by a complex conjugation. As a consequence of the latter result, we 

then find that the inverse scattering equations for the BO equation can be simplified. 

Then by including the asymptotics of the Jost functions for nongeneric potentials, 

we furthermore find that the inverse scattering equations of Ref. [1] can be extended 

to include this case as well. Also, we will show how to define a phase shift for this 

scattering problem, the change of which, between the extreme limits of the spectral 

parameter, can be related to the number of bound states. This phase shift is related 

to the spectral integral in the Anderson-Taflin conservation law [16, 17], which then 

shows that the Anderson-Taflin conservation law is the analog of Levinson's Theorem 

[18] for the BO equation. 
A key feature of these new results is the treatment of the adjoint problem of 

the eigenvalue problem for the BO equation, by which we are able to define inner 

products of the Jost functions. Such a study is important because it allows one 

to obtain important data about the scattering coefficients and the orthogonality of 

the Jost functions. Such a treatment will undoubtedly become a key for a later 

development of a general perturbation theory for the BO equation. 

In the next section, we review the results from Ref. [1]. They are reproduced here 

only for completeness, and we will only list those relations that we will need to refer 

back to and use. We will use their notation for the definitions of the Jost functions and 

the various scattering coefficients. In later sections, we will introduce new quantities 

as needed. In Section III, we study the adjoint problem of the BO eigenvalue problem 

and define their inner products. From these relations, it naturally follows that the two 

reflection coefficients of Ref. [1], /(A) and ß(X), are related by a complex conjugation 

when the potential, u(x) is purely real. Note that essentially all the analysis in Ref. 

[1] was done for u(x) complex in general, in which case these two reflection coefficients 

would be independent. Thus it is not surprising that if one requires u(x) to be purely 

real, simplifications will occur. In Section IV, we briefly study the Jost functions for 

pure Af-soliton solutions. These iV-soliton solutions are in the class of nongeneric 

potentials and have features distinctly different from the generic potentials studied 

in Ref. [1]. It also is an interesting pedagogical exercise to solve the BO eigenvalue 

problem for these pure iV-soliton solutions. It is only for such a potential that closed 

form solutions for the Jost functions are known. We shall see that although these Jost 

functions exist for almost all values of the spectral parameter, A, they in general will 

have logarithmic singularities in the upper-half complex rc-plane. These singularities 

in x then vanish only when A is either the bound state eigenvalue (Xj < 0) or in the 

continuous spectra ( A real and > 0). In Section V, we extend the results of Ref. 

[1, 19] for the asymptotics of the Jost functions, in the limit of A —► 0+, to include the 



general case of nongeneric, as well as generic potentials. In Section VI, we simplify 

the inverse scattering equations of Ref. [1] to the case of a purely real potential, 

and also extend them to include the possibility of nongeneric potentials. We also 

specify the restricted scattering data for real potentials and briefly mention the time 

dependence of this scattering data for the BO equation, which is given in Ref. [1]. 

(For simplicity and clarity, we shall otherwise ignore the time dependence in all the 

Jost functions and the scattering data.) In Section VII, we obtain the infinity of the 

conserved quantities for the BO equation. These are obtained from an asymptotic 

expansion of the Jost function 77(x, A) for large A. We also give these conserved 

quantities in terms of the scattering data. The first of these conserved quantities 

relates the energy in the BO field to the energy in the scattering data. The energy of 

the soliton portion and the energy density of the radiation are each positive definite 

and additive. From the conservation of the total area of the BO field [16, 17], we 

find an analogy of Levinson's Theorem for the BO equation. Here we can relate the 

total change in a phase shift and the total area of the BO field to the total number 

of bound states. 

II    BACKGROUND 

The following is material taken from Ref. [1], and is reproduced here for completeness, 

since we shall be using this notation and will need to refer to these equations. The 

eigenvalue problem for the BO equation may be taken to be 

vx — iXv — i[uv}+ = 0 , (2) 

where v is the eigenfunction, analytic in the upper half :r-plane, A is the eigenvalue 

(spectral parameter), and the brackets with the superscript"+" indicates that one is 

to take that part of the argument which is analytic in the upper half complex x-plane. 

We will indicate the same for the lower half rc-plane with a "-" superscript. Thus, as 

in Ref. [1], we take 

itf=^r^ v(*i.g. (3) 2-KI J-oo £ - x =pze 

for e —»• 0+.   There are two Jost functions of (2), only one of which is linearly de- 

pendent.   First, there is the solution N(x, A) defined on the right, and there is the 

solution M(:r, A) defined on the left. 

N{x — +oo, A) -♦ eiXx ,    M(x -+ -oo, A) — eiXx . (4) 

These solutions exist for all positive values of A. They can be given as solutions of 

integral equations [1], such as 

1       /-oo roo     p~l    H.Z 

N{x,X)e-^ = l--ljt«m(i,X)l   ^j-. (5) 



There also can be a discrete set of bound state solutions, $j(x), of (2), for A = 
Aj < 0, (j = 1,2,..., J) where J is the total number of such bound states, possibly 
infinite. Due to (2), each of these eigenstates is an analytic function of x in the upper 
half complex rc-plane. The bound state eigenfunctions can be normalized as 

^j{x -» +oo) -♦ - . (6) 

Upon taking the limit of x -»• oo of (2), from (3) and (6), it follows that 

*i = -^/_1*i(fl«(0de, (7) 

and one finds in a similar manner that (6) is also true in the limit of x -»• -oo. These 

functions satisfy the homogeneous form of (5), which is 

1    r°° r°°  e~l>ijZdz , . 

In addition to these eigenfunctions, one can also defined two auxiliary functions, 
~N(x,\) and M(x,X), each of which are a particular solution of the inhomogeneous 

equation 
Vx-i\V-i[uV]+ = -i\, (9) 

and are defined by the boundary conditions 

N(x -* +oo, A) -> 1,    M(x -> -oo, A) -> 1. (10) 

For real positive A, they can be obtained from N and M by differentiating with 
respect to A, provided /(A) and #(A) are nonzero. In particular 

/(A)JV(:r,A)   =   eiXxdx[N(x, X)e~iXx}, (11) 

g(X)M(x,X)   =   eiXxdx[M(x,\)e-iXx], (12) 

where 

-1   r°°   TOO 

/(A)   =   ^/^«(O^V^AK, (13) 
 I fOO   

g(\)  =  2^/_00
w^)M^A)^- (14) 

They also satisfy the integral equations, 

1       /.oo roo    p~    zd,Z 

N(X, A)e- = e- -TJ^ ^(OiVtt, A) I   I-r-. (15) 

These functions also have analytical properties with respect to A.    M(x, A) is 
analytic in the upper half complex A-plane while N(x, A) is analytic in the lower half 



complex A-plane. By Fredholm theory, Fokas and Ablowitz then were able to show 
that, in the appropriate complex A half-plane, as A approaches any of the bound state 
eigenvalues, each of these functions would approach the limit: 

% 
N(x,X- - A;) - X-Xj 

M{x,X- - A,) - 
—i 

X-Xi 

-$j{x) + {x + 'yj)$j{x) + ..., (16) 

^(x) + {x + 7;)$;(z) + .. • • (17) 

The complex quantity 7j is a necessary piece of the scattering data. It has been shown 
that for the case of a pure TV-soliton solution [20] and also indirectly from the limit of 
the ILW equation [19], its imaginary part is positive and is given by -l/(2Ai). Later, 
in Section III, we shall show that one can obtain also easily obtain this same result 
directly from the inverse scattering equations of the BO equation. 

On the real, positive A-axis, M(x, X) is related to N(x, A) and N(x, A) by the 

scattering equation 
M{x, X) = N{x, X) + ß{X)N{x, A), (18) 

where ß(X) is a reflection coefficient, which can be given by 

/oo 

u(flMfoA)e-*de. (19) 
-oo 

From the above scattering equation and the analytical properties of N and M, 
Fokas and Ablowitz obtained a key relation for the solution of the inverse scattering 
problem. This relation relates T7(x,X), for A in the lower half complex A-plane, to 
the eigenfunctions N(x, A) on the real A-axis and the bound states $j(x). This is 

-»7/    n      ,        1     r*>ß(\')N(x,\')d\'      .^      1      _ ,  * ,om 

Requiring (20) to satisfy (9), one obtains the means for reconstructing the potential 
u(x) from the scattering data and the Jost functions. This is 

1 /-oo   

M+(s) = T- I    ß(X)N(x,W + iY,*iW . (21) 
Z~Kl JO j 

where u(x) = [u]+(x)+ complex conjugate. 
The first of the inverse scattering equations is a set of linear dispersion relations 

that relate the bound states, $j(x), and the continuous eigenstates, N(x,X). This 
relation follows from (16) and (20), upon taking the limit of A -» Afc in (20). Fokas 

and Ablowitz obtained 

^1 1    rß(X')N(x,X')dX'      1 /00. 

J'^fc 



which is Eq. (27) of Ref. [lj. 
In addition to this set of linear dispersion relations, one also needs a linear disper- 

sion relation for the continuous spectra, that will allow one to also determine N(x, A). 
This will follow upon integrating (11) with respect to A, and then using (20) to elim- 
inate N(x,X). This will give an integral equation involving integrals with respect to 
A, but containing only N(x,X) and $j(x), which is Eqs. (26) and (28) in Ref. [1] 
and Eqs. (30) - (32) in Ref. [19]. The solution of these, in conjunction with (22), 
provide the solution of the inverse scattering problem. We shall not give these forms 
here since they were obtained for complex, generic potentials and we wish to simplify 
them to the specific case of real potentials, and to extend them so that they may also 
include even the case of nongeneric potentials. 

Ill    THE ADJOINT PROBLEM 

From now on, we shall restrict our analysis to the case when the potential, u(x), is 
strictly real. This will provide us with several simplifications and will relate the two 
Fokas and Ablowitz reflection coefficients. Consider the adjoint problem of (2). It is 

vA + iXvA - iu[vA)- = 0 . (23) 

Its solution is rather simple. First, take the part of (23) which is analytic in the lower 
half complex rr-plane. Then one sees that one simply has the complex conjugate 
of (2). Second, take the part of (23) which is analytic in the upper half complex 
z-plane. This is a simple, first order, inhomogeneous ODE. Combining these two 
solutions together, one has that a solution of the adjoint problem, NA(x, A), is 

N' \x, A) = M*(x, X)-i f [uM*]+{^ A)e-iA(l-^£, (24) 
J—oo 

where M is defined by (4). The last term in (24) is the part which is analytic in the 
upper half complex x-plane. 

We define the adjoints of the bound state eigenfunctions, NA(x), similarly. 

NA(x) = $*(z) - i f [M$;]+(0e-<A'(!B-€)df. (25) 
J—oo 

Next, we obtain some relations between our Jost functions and scattering coef- 
ficients. Note that N and M are not independent solutions. Thus they must be 
proportional [19]. For A > 0, 

M(x, A) = r(X)N(x, A), (26) 



where T(A) has two equivalent forms: 

/oo   

«(OM(u)e-
ü^e, 

■oo 

= [i-^^we.Aje-^de]-1. 

Thus by (13) and (14), 

3(A) = T(A)/(A). (28) 

Also, from (11), (12), (26) and (28), it follows that for real, positive A, 

(27) 

1 

^(A) = ^r(A)' (29) 

which relates T, ß and g. 

We will need the asymptotics of these various Jost functions.   These all follow 
from the definitions and (5), (15), and (23). For x -+ +oo and A > 0, 

N(x,X)   ->   e^, (30) 

N(x,X)   -   1, (31) 

M{x,\)   _   e^r(A), (32) 

M(x,X)   ->   l+^(A)c"*, (33) 

NA(x,X)   -   e-'AlP(A), (34) 

while for a: -> -co and A > 0, 

N(x,X)   -   r-i(A)e"*, (35) 

7V>,A)   -   i_^le*A* ,    , v    '           r(A)    ' (36) 
M(x,X)   ->   eiAa: 

(37) 

A^(a;,A)   -   e 

For the bound states, for x -»• +oo and A = A • < 0 

1 

M{x,X)   -   1, (38) 

(39) 

*i(*)   - 
X 

J—oo 

while for a; -» -oo and A = A, < 0, 

(40) 

(41) 

*i(*)   -   -, (42) 

#/(*)   -   0. (43) 

8 



Now, from the Wronskian relation, we can relate the asymptotics on the left to 
those on the right, and also define inner products. It follows that, for any solution, 
v(x, A), of (2) and for any solution, vA(x, A'), of the adjoint problem, (23), 

vA(x, X')v(x, A) 
a;=-oo 

/oo 

vA(x,X')v(x,X)dx. 
■oo 

(44) 

Thus for A' = A, vA = NA, v = N and from (30), (32), (35) and (37), it follows that 

P(A)r(A) = 1. 

Whence we may define a real phase shift, 0(A), by 

r(A) = e-ieM. 

Let us now define a norm. 

. TOO 

(vA\v)= /    vA(x)v(x)dx. 
J—oo 

Then from the Wronskian relation, (44), it follows that 

(NA(X')\N(X)) 
_2TT_ 

r(A) 
6(X - A'), 

where S(X - A') is the Dirac delta function. Also 

(NA\N(X))=0 = (NA(X')\$j), 

(NA\^k)=0,    ifjjLk, 

(45) 

(46) 

(47) 

(48) 

(49) 

(50) 
for A and A' real and positive. 

One can also use the Wronskian relation with the function N- 1. From (9) and 
(23), one obtains the general relation 

NA(x,X')[N(x,X)-l] 
/OO 

tfA&A')[Är&A)-i]de 
-oo 

/oo 

^«(W^Ttädt. (51) 

We consider various cases for (51). For A' = A, < 0, from (20), (31), (36), (41), (43), 
(49), (50) and (51), and then using (7) and (25) in obtaining the second line,'there 
results 

<AT>,)   =   i T u(0{NA}-(Od^, 
J—oo 

=   -2-KXJ. (52) 



This gives us our nonzero inner products of the bound states. Next, for A' > 0, from 
(20), (31), (34), (36), (39), (48), and (51), and again, then using (13), (24), (26) and 
(45) in obtaining the second line, there results the key relation, necessary for relating 
/(A)and/?(A). 

ß(\') = -ir(x')ru(0[NA(xT(m, 
J — oo 

=   -27riA7*(A'), (53) 

from which we have 

/«■^ 

which is exactly the relation that one would find from the linear limit. When we 
combine (29) with (28) and (53), we also find 

dx6{X) = "ärT • (55) 

Thus the phase shift will always be a monotonic function of A. 
We can now demonstrate that the imaginary part of 7,- is related to the eigenvalue 

Xj, as mentioned under Equation (17). As mentioned before, this already has been 
shown to follow from the BO limit of the ILW equation [19]. Here, we simply show 
how to obtain this result purely from the BO eigenvalue problem. Take the inner 
product of (22) with the state Nf(x), and then take the imaginary part. One obtains 

Im f°° Nf{x)[x$j{x) - \}dx = 27rAiIm7i . (56) 
J —oo 

Now use (25). The second part of Nf(x) is the part of Nf(x) which is analytic in 
the upper half complex x-plane, as is also [x$j(x) - 1], with the latter vanishing like 
l/x for large [rrrj. Thus this part gives a zero contribution to the integral. The first 
part of Nf(x) combined with the x$j(x) term gives a real quantity, so neither does 
it contribute. What one is left with is simply 

/oo 
<^*j{x)dx = 27rAiIm7i . (57) 

-oo 

Evaluating the final integral along an infinite semicircle in the lower half complex 
x-plane, gives the final result 

Im7i = 2T' (58) 

10 



IV     JOST FUNCTIONS FOR A PURE SOLITON 

SOLUTION 

Although W-soliton solutions of the BO equation have been studied often, so far it 

seems that there has been no study of the Jost functions for a single soliton These 

are very simple, very instructive solutions and their structure demonstrates some of 

the features of this scattering problem. Thus we give them here and point out some 
oi their more important and unique features. 

When the potential is a pure 1-soliton solution, the reflection coefficient ß(\) must 

vanish^Then one has_/(A) = 0 by (54). We can immediately obtain the bound states 

from (22) and then N(X) from (20). Let the bound state eigenvalue be A, = 
where a > 0. From (22), it follows that 

ha 

$l(*) = ^TV (59) 

where from (58), we take 

7i = -x0+i/a, (60) 

where x0 will be the center of the soliton and a will be the amplitude. Note that since 

a > 0 we have ^(x) analytic in the upper half complex z-plane. The potential can 
now be recovered by (21), which gives 

M+(*) = 
* + 7i' 

U{X)      (* + 7i)(s + 7f)' (61) 

Although we are able to recover the iV-soliton potential, at the moment, we have 

no mechanism for the direct construction of the Jost function, N(x,\). Clearly, we 
can obtain N{x,X   from (20) since ß(X) = 0.   However, since /(A) is zero, we can 
only obtain from (11), the seemingly trivial result 

N(x,\)=n(x)eiXx, (62) 

where n(x)is independent of A. This result will hold for any of the 7V-soliton solutions 

As we shall see later, one can determine n(x), but it will be necessary to first establish 
tne asymptotics of the nongeneric case in the limit of A -» 0+) 

Otherwise, the only means that we have at the moment for reconstruct of N(x A) 

is by means of the direct scattering problem, (2) and (4). We illustrate how to do this 

in general for the one-soliton potential, (61).   The general multisoliton case can be 

11 



treated in the same way. Noting that N is to be analytic in the upper half complex 

x-plane, the function [uN]+ can be evaluated using the residue theorem, which gives 

'   [uN}+=u(x)N(x,\)+iN{X0+i/a)X)- (63) 1     ' x - x0 - %/a 

Note that the last term has a pole in the upper half complex z-plane. It now is 

relatively easily to integrate (2) under the boundary condition (4). The result can be 

expressed in the form 

N{x,\) = e^X ~X°~I [l+JV(*o+-, A){(l+-)e**%(z)+-     *~**   t }] , (64) v      ' x-x0 + ^1 a    '^      a ax-x0-^)j 

where z = i\(x — XQ — if a) and E\(z) is the exponential integral, defined by 

-dt,     |arg(z)| <TT. (65) Ei(z)=l 
oo e-t 

t 

The expressions (63) and (64) still contain the unknown factor N(x0 + i/a, A). How- 

ever, in view of the fact that Ei(z) has a logarithmic singularity at z = 0 ( E\(z) ~ 

—7—In z+0(z) as z —* 0, where 7 is Euler's constant), which is in the upper half com- 

plex 2>plane, one can see that in general, the result (64), is not analytic in the upper 

half plane, unless the products of the coefficients of this term, N(x0+i/a, A)(l +2A/a) 

happen to vanish. 
If we choose N(x0 + i/a, A) = 0, then (64) takes on the particularly simple form 

N(x,\) = eiXxX~X°~i/i
a, (66) 

X — XQ + t/a 

which is exactly of the form predicted by (62). Furthermore, in the limit of x —> — 00, 

from (4), (26), and (66), it follows that T(A) = 1 for the soliton solution. Note that 

this is in accordance with (45), (46) and (55), since 6 must be a constant for ß(X) = 0. 

It also can be confirmed directly from (27), (61) and (66). 

The solution (64) is the continuous spectrum, A > 0. For the bound states, we 

must have A < 0. This solutions will be the same as (64), except that the first term, 

1, in the first bracket of (64) will be absent. Again, the term £i(z) can be made to 

vanish, but now, by taking (1 + —) = 0. However, this is just a restatement of (58), 

in that the imaginary part of 7^ (1/a), is related to the bound state eigenvalue by 

Ai = —\a. With this, the solution reduces to the bound state solution given by (59). 

Another important point of these nongeneric solutions is that from (61) and (66), 

one obtains 
ma 

u(x)N(x, X)e~iXxdx = 0. (67) 
j—< 

As we shall shortly see, this has implications for the asymptotics of the Jost functions 

for nongeneric potentials in the limit of A —*■ 0+. It shows that the nongeneric 

potentials can have this integral as being zero, in contrast to generic potentials, for 

which this integral is always nonzero [1, 19]. 
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V    ASYMPTOTICS OF THE JOST FUNCTIONS 

In order to extend the inverse scattering equations of Ref. [1] to include the nongeneric 
cases, it will be necessary to address the asymptotics of these Jost functions, N(x, A) 
and N(x, A), and the reflection coefficient, ß(X), in the limit of A —»• 0+. Let us start 
with the Green's function form of the solutions [1], (5) and (15). One can reduce 
these to: 

r°° 
N{x,X)e~lXx -1+i       u(Z)Nß,X)e-^d^ 

Jx 
1     f°° 

-^J_ooU(ON(^X)e-^El[iX(x-^-ie)]d^   =   0, (68) 
  roo   

N(x, X)e~lXx - e~lXx + i /    u{£)N{Z, Xje'^d^ 
Jx 

I     roo   

-^J^iON^X^-^E^iXix-Z-iem   =   0, (69) 

where Ex{z) is the exponential integral, defined by (65). Now define 

£i (z, A) = Ex [iX(z - ie)\ + 7 + In (iX), (70) 

where 7 is Euler's constant. In the limit of A -* 0+, we have 

£i(z,X^0+)^-Inz + 0(zX). (71) 

The asymptotics given in [1] and [19] handle the generic case quite well. The 
asymptotics for the nongeneric case can also be included in a like manner, provided 
one allows for the vanishing of an integral, namely (67), in the limit of A -* 0+. To 
do this, first note that without any approximations, (68) can very nicely be put into 
the form 

r°° 
N0(x,X)e~lXx -1+i       u(£)N0(£, A)e~<A^ 

Jx 
1    f°° 

-^J_oon(ONo^,X)e~iX^£1[iX(x-C-ie)}   =   0, (72) 

where 

NQ{x,\)   =   N(x,X)/jV(X), (73) 

/V(X)   =   l-h + ln(iX)}^-J°^u(ON(^X)e-iX^, 

1 

1 + [7 + "In (iA)]i H, «(0Ab(e, X)e-**d£ ' (?4) 

with jV(\) being a constant, independent of x. As is clear from (72), the function 
N0(x,X) satisfies a raonhomogeneous integral equation and therefore is uniquely de- 
termined. Thus it cannot be normalized. Furthermore, for A -► 0+, due to (70), the 
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solution for N0(x,X) can be expanded in an asymptotic power series about A = 0, 
and when so expanded, will have no In A terms present. Thus 

N0(x,X)^Noo(x) + 0(A), (75) 

where N00(x) is the solution of (72) for A = 0 and satisfies 

/•oo 1 /"OO 

Noo(x) -l+ijx   «(O^oom +2^J ^«(£)Woo(0 In(x - ^ - *e)o^ = 0.     (76) 

Clearly, N(x, A) will have a similar structure and can be put into a similar form. 

  1 _ p-i^x ,<x>   
N0(x, \)e-^ - 1 + +ijx   u(0N0(Z,\)e-lXtdt; 

1    /"°° 
--J_ooU(0N0^,X)e-^d^1[i\(x-^-ie)}   =   0, (77) 

where 

N0{x,X)   =   N(x,X)/J7(X), (78) 

^(A)   =   1 + h + ln(iX)}^JZo^)No((, A)e-«fde ' (?9) 

However, these asymptotics will be slightly different. Due to the presence of A/*(A) in 
(77), we have instead 

7Vo(x, A) - N00(x) + O(X) + O(^JT) , (80) 

where the function N00(x) is the same function as in (75), which is given by (76). 
The terms Af(X) and 77(X) contain the asymptotic forms of the A dependence of 

the Jost functions for all possible cases, generic and nongeneric. We already know 
that there are solutions for which the integral 

/oo 

u(OWoo(#d£, (81) 
-oo 

is exactly zero, (67), which are the iV-soliton solutions. It is not known if there 
are other examples, but it is possible that initial value problems where u(x) has a 
vanishing small amplitude with a vanishing area may also have this integral zero. 

Before continuing, we briefly comment concerning the asymptotic forms of these 
Jost functions. It should be clear that the above forms will be useful only as long as 
|Ax| << 1, since it is only then that we can find the expansion (71) useful. However 
all equations given here, from (68) to (80), are exact, except for the three asymptotic 
forms; (71), (75) and (80). Now, take a wider view of these asymptotics. For any 
given, sufficiently small value of A > 0, there will always be 4 different regions, each 
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containing different asymptotics for the Jost functions.    First, there is the region 
where «(*) is essentially nonzero.  Second, (and considering only the regions to the 
right of the potential, there are also similar regions to the left) there is the region 
where u{x) has become effectively zero, but one still has xX « 1. Here from (76) 
one has N0Q(x)  -> 1 - (In *)£/„, which, when the integra, ig nonzer'    ^.^ 

the In* dependence found in [1] and [19] for the generic case.  Continuing, for any 
given A > 0   there will exist values of x for which Xx = 0(1), with the potential 
also bemg effectively zero. This is the third region, where we no longer can use the 
asymptotics provided by (70), but must return to the original form given by (68) 
This is a transition region, where the nature of the solution is changing from an 
interior solution to an exterior solution.  The asymptotics here are now determined 
by Ei(x\) instead.  Lastly, there is the fourth region, where for any given A > 0  x 
has become so large that xX » 1. Here there is no remaining In, dependence m the 
Jost Wtions and instead the Jost functions are approaching the appropriate values 

Now, la   us turn to the asymptotics of the scattering data.   As in Ref.   [1]   we 

withlTt T f™^" fr°m 'he SPatial int6SralS °*a S Pr°duCt °f the P° «'-I w.th a Jet funcriou. To evaluate the asymptotics of such a integral, we only need 
to confer the asymptotics of the Jost function in the first region since we will be 
assunung that „(*   » sufficiently localized to ensure that the resulting finfit of the 

ZXZt    1 tr!, 'hat "e Wi" CODSider m <13'' W- -d (W We  hen 
Nations D {XA) and (54) t0 eliminate /(A»-   ™s Sives us the exact 

/OO 

^(ON&XM, {82) 
/oo 

.oo«(0Ar(e,A)e-i^, (83) 
1 roo 

m = ^V-oo"^^'^"^- (84) 

N(X)   -   /Ä+°(fi?A)- (85) 
m   "*   I^Tx+°^' ' (86) 
1  '   ' TöoTnX+°W- (87) 
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r(A) - i+^ + 0(_l_). m 

If the integral 70o is zero, we then have the nongeneric case, where instead 

Af(X) -» l+0(AlnA), (91). 

77(A) - l+0(AlnA), (92) 

7V(a:,A) -> iVoo(a;) + 0(AlnA), (93) 

iV>,A) - 7Voo(a;)+0(AlnA), (94) 

ß(X) - O(AlnA), (95) 

r(A) - l+0(AlnA). (96) 

From (55), (90) and (96), we now have the full solution for 0(A). It is 

Given initial scattering data for the BO equation, it is a simple matter to determine 
whether one has the case 70o zero (the nongeneric case) or nonzero (the generic case). 
Simply look at the asymptotics of ß{\ -* 0+) and determine how fast the reflection 
coefficient is vanishing. Note that we do not assume that the nongeneric case only 
includes the 7V-soliton solutions, which requires ß(X) = 0. Although the nongeneric 
case does contain the 7V-soliton solutions, we have not been able to exclude the 
possibility of the existence of nongeneric cases where ß(\) ^ 0. 

VI    SIMPLIFICATION OF, AND EXTENSION OF 

THE 1ST FOR THE BO EQUATION 

With the above, we may now simplify the last linear dispersion relation (Eq.(26) of 
Ref. [1]) to the case of a real potential, and also extend it so as to include nongeneric, 
as well as generic potentials. We shall proceed as in Ref. [1] except for one key 
difference. We shall first subtract off a collection of terms that, upon integration, 
would give singular integrals. 

Consider (11) and (20).   If one attempts to integrate the resulting expression 
directly, one obtains a singular result in the limit of A -» 0+.  In Ref.   [1], this was 
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handled by subtracting off the singular part of the reflection coefficient, /(A), into the 

factor /„(A), and then integrating the terms in such a fashion, so that the singular 

integrals would cancell. Here, we shall use a slightly different procedure for handling 

these singular terms. We shall simply subtract off the limit of a Jost function in the 

limit of A -»• 0+. This Jost function vanishes in this limit for generic potentials, but 

for nongeneric potentials, it is a key component of the solution. To see this, take the 

limit of A -»• 0+ in (20). There results 

—,     x 1    r°°ß{X')N(x,\')d\'     .v^l.,v ,nQs 
NW = 1 + 2riJo \> +1^J{X)- (98) 

As we have seen in the previous section, the function N(x,0) is either 0 or NQO(X), 

depending on whether I00 is nonzero (generic) or zero (nongeneric). Note that in 

either case, the integral in (98) is not divergent as A —► 0+. (Note also that in the 

generic case, (98) is then an identity and therefore a constraint on the Jost functions 

and scattering data, particularly the parts that give rise to the singular integrals. 

Thus this proceedure could have been used equally well in Ref. [1], which would have 

given them a simplify version of their Eq. (26).) 

Let us now use (98) to subtract off the parts of (20) which would give singular 

integrals. Simply subtracting gives 

Note that the last two terms are now proportional to A. 

Using (11) to eliminate N(x,X) from (99), then as in Ref.  [1], we may integrate 

the result from A —> 0+ to A, and noting that N(x,0) — N(x,0), we obtain 

_ — J    1 
N(x, X)e~iXx   =   N(x,0)-iw(x,X,0)N{x,0)-^2— $j(a:)io(a:, A, A,-) 

1     r°° dX' 
+^l   ~ß(X')N(x,X')w(x,X,X'), (100) 

where 
1    f* ß*(t)e-Uxd£ 

W^KX) = ^l    t-X'-ie  ' (101) 

for A' real (and either positive or negative). This is the simplified and extended form 

of Eqs. (26) and (28) of Ref. [1]. As one may readily verify from (87)-(95), all 

the integrals in (100) and (101) are well defined and nonsingular at the lower limit, 

except for the term w(x,X,0) in the generic case (Zoo ¥" 0)- However in this case, 

since N(x,Q) is zero anyway, the quantity w(x, A,0) is never required. 

In the nongeneric case, (Zoo = 0), we close our set of equations by including (98) in 

the set of linear dispersion relations. Our final set of inverse scattering equations, valid 

17 



only for real potentials, but extended to include nongeneric potentials, are therefore 

Eqs. (22), (98), and (100), with recovery of the potential being achieved by (21). 

Note that once these solutions are obtained, then one may construct N(x,X) from 

either (20) or (99). 

For iV-soliton solutions, since ß(X) = 0, all terms in (100) vanish, except for the 

first term, N(x,Q), which can now be given by (98). In this case, (100) reduces to 

(62) with its value being given by (98). 

This particular structure of a set of inverse scattering equations deserves some 

comments. As already noted, in the generic case (70o 7^ 0), (98) gives a constraint 

on the scattering data, since the left-hand side is zero. This can be understood as 

follows. Due to (87), (88), and (89), the reflection coefficient and the Jost functions 

have been predetermined at one point, A —»■ 0+. Thus one degree of freedom is missing 

from the continuous spectrum, which is taken up by the nonzero value of IQQ. On the 

other hand, in the nongeneric case, (70o = 0), then the reflection coefficient and the 

Jost functions are not predetermined in this limit (only the order is known, not the 

coefficient), and (98) and (100) then are independent equations, with no degrees of 

freedom missing. 

The time dependence of the scattering data for the BO equation was first given 

in Ref. [1]. We include it here for completeness, and it is simply 

dt 

dt 
dß{\t) 

dt 

0,    i = l,2,...,J, (102) 

2Ai(t),    j = l,2,...,J, (103) 

i\2ß(\,t). (104) 

VII    AN INFINITY OF CONSERVATION LAWS 

Although it has long been known that the BO equation has an infinity of conserved 

quantities [8, 9, 21], no general scheme has ever been given for their generation from 

the scattering problem [22, 23, 24], nor has anyone ever given them in terms of the 
scattering data. This we shall do here. 

Start with the eigenvalue equation for W(x, A), (9), and its time evolution 

Nx - iXN - i[uN}+ = -iX, (105) 

Nt - 2XNX - i~Nxx - 2[u]+N = 0. (106) 

Then from (1), (105) and (106), one has that 

/oo   

[u(x)N(x, X)]tdx = 0. (107) 
■oo 
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Thus the quantity J^u{x)N(x,X)dx is conserved. This conserved quantity can be 
evaluated in terms of the scattering data. It follows from (20) that 

jy*m^-^--lfmm_dy+2rt^    (108) 
where (7), (13), (54) and (104) have been used. 

Now, expand N(x, A) in inverse powers of A, as 

Substitute this into (105). One can now determine Nn+1(x) successively from: 

Ni = 1,    Nn+l = iNn>x + [uNn}+, (n > 1). (110) 

Expanding (108) also in an asymptotic series for A large, then substituting (109) into 
the result and comparing the coefficients of A- on both sides, we obtain 

/oo   

u(x)Nn(x)dx, 
■oo 

1 f°° 0 J 
=   tf-Wl   A'""V-(A')/?(A'MA' + 2IrE(-A3r-,    (n>2).   (Ill) 

i=i 

which are the taflnity of eo„Served quantities. Clearly, one can generate Nn{*) to any 
order and therefore any conserved quantity. Furthermore, note that each conserved 
quanrity la simply the (n - 2)th moment of the radiation density, ß-(X)ß(X)  plus 

ouZtT § ^ fOT the S°lit0n COntribUti0n' % Mte that *e fiLrdnirv^ quantity, i^ is 

/oo  j j 1 

.» 2"2dx = 2lrg(-Ai) + S jf«A/JW(A), (112) 

which relates the energy in u(x) to the energy in the scattering data 

from t^ I   qT? f" "J"' *IS alS° COnSerVed' "S eXPmsion «™>* ^ obtained 
from the above  Instead, ,t has to be obtained by a separate consideration, which we 

from   Z t K    ^ I" ^^ UP°n mUUiP,yiDS (98> b* «<*> »d ^grating Irom -oo to oo, by which we obtain 

2,rJ = Sy„  T/?WW + /„"W^. (113) 
which relates the number of bound states, J, and the total «quanta» of radiation to 
the total area under u(x). This is the Anderson-Taflin [17] conservation law and its 

wzzsszr*in M N'"is the -«°f"—— 
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An important feature of this conservation law follows from (97). Expressed it as 

/oo 

u{x)dx, (114) 
■oo 

shows that the total number of bound states depends only on the value of the to- 

tal phase shift, #(co), and the total area under the profile, both of which are time 

independent. Also, we see that for a given area, there is no limit on the number of 

solitons that could be generated, unless the total phase shift was somehow limited. 

But on the other hand, from (112), we see that for a given total area of a profile and 

a given total energy, there is a limit on the total number of possible solitons that are 

larger than any given size. 

The form of (114) is very suggestive. Since both J and the total phase shift are 

positive definite, we see that the total area under the profile is expressible as a positive 

quantity, 2irJ, minus another positive quantity, 0(oo). Thus, in some fashion, it seems 

that we can expect the positive regions of u{x) to be the sources of the solitons while 

the negative regions would be the sources of the radiation. In fact, in the small 

dispersion limit of the BO equation, one can derive exactly this condition [25, 26, 27], 

whereby the strictly positive parts of the profile area determine the number of solitons. 

VIII    CONCLUSIONS 

We have restricted the results of Ref. [1] to real potentials, obtaining a reduction 

in the number of reflection coefficients required. We have also extended the same to 

include nongeneric potentials and have generalized their inverse scattering equations 
to include this case. 

When the potential is real, we have shown that /(A) is directly proportional 

to ß*(X). We have also generalized the asymptotics of the Jost functions and the 

scattering data to the nongeneric case. With only one minor change, we have modified 

the set of inverse scattering equations introduced in Ref. [1], by the introduction of 

one new function, N(x,0), which vanishes for generic potentials, but is nonzero, and 

is a key function, for nongeneric potentials. 

We note that although TV-soliton solutions, for which /3(A) vanishes identically, are 

one set of examples of nongeneric potentials, we do not know if there are other sets. 

This class of potentials is distinguished from generic potentials by the vanishing of a 

single integral, 700, complex in general, and thus with only two degrees of freedom. 

Considering this, it then seems quite unlikely that the vanishing of this single integral, 

with only its two degrees of freedom, would be sufficient to guarantee that ß(X), would 

have to vanish identically, for all A. Considering such, then one expects that there 

must exist other examples of nongeneric potentials besides iV-soliton solutions.  We 
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have already noted that one such example could be a zero area pulse with a vanishing 

small amplitude. 
We have also presented the necessary recurrence relations for generating the infin- 

ity of conserved quantities from the Jost function, N(x, A), and also have given these 

quantities in terms of the scattering data. We have shown that the Anderson-Tanin 

[17] conservation law is the analogy of Levinson's Theorem for the BO equation and 

that it relates the total area of the BO field to a total phase shift and the total number 

of bound states. 
We have also obtained the inner products of the Jost functions with their adjoints. 

These functions can be expected to be a closed set for any function analytic in the 

upper half z-plane, and a proof of such could be expected to follow from a similar 

proof for the ILW equation in Ref. [28]. If we adjoin to these functions their complex 

conjugates, then the total set would be expected to be complete for any L2 function. 

Also, from the inner products, assuming closure, one finds a very suggestive structure 

of the closure relation. It may be possible to interpret this in some manner, perhaps 

equivalent to bound state eigenvalues being given by the zeros of T(A), somehow 

continued into the negative real A-axis. This was a key feature of the Zakharov-Shabat 

1ST [15]. This also seems to be implied from the BO limit of the ILW equation [19]. 
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